## Week 7 Polling

Homeowners (n=16) or renters (n=16) are asked to rate how concerned with the economy they are [scale from 0 (not) to 7 (very concerned)]. Homeowners' mean rating is 4.8 and renters' is 5.6. The estimated SE for the difference is 0.6. [KEEP READING]

If the null hypothesis states that there is no difference in concern about the economy, then is this result significant (alpha=.05) for a two-tailed independent-samples test?

Yes, this result is significant.

$$t = \frac{M_1 - M_2}{SE} = \frac{5.6 - 4.8}{.6} = \frac{.8}{.6} = 1.33$$

No, this result is not significant.

$$df = n_1 + n_2 - 2 = 32 - 2 = 30$$

A researcher finds a statistically significant mean difference of 1.0 between two sample means. If the pooled sample variance is 4.0, then what is the Cohen's d?

$$d = \frac{M_1 - M_2}{\sqrt{S^2 p}} = \frac{1.0}{\sqrt{4.0}} = \frac{1}{2}$$

0.50

1.40

2.0

A researcher observes the same group of participants in the morning and again at night. What type of research design did the researcher use?

Repeated-measures design

Matched-pairs design

A researcher compares differences in personality traits among pairs of identical twins. What type of research design did the researcher use?

Repeated-measures design

Matched-pairs design

Difference scores are computed \_\_\_\_\_ we compute the test statistic for the related-samples t test.

**Before** 

After

A group of 20 participants is observed two times. The related-samples t test for this study will have a degree(s) of freedom equal to:

1

$$df = n - 1$$
  
= 20 - 1 = 19

39

A researcher measures scores in two groups (n = 12 in each group) with a mean difference of 5. In this study, the estimated standard error for difference scores is 2.9. What is the decision for a related-samples t test using a two-tailed test, alpha .05?

Reject the null hypothesis

$$t = \frac{\bar{D}}{s_0/\sqrt{n}} = \frac{5}{2.9} = 1.7241$$

Fail to reject the null hypothesis

tcv (11) = 
$$2.201$$
  
 $df = n - 1 = 11$   
 $t < tcv = ... Fail to$   
rejecting test statistic for a related-samples t test;  $t(22) = 3.14$ ,  $p < .05$ .

A researcher computes the following test statistic for a related-samples t test: t(22) = 3.14, p < .05. What is the proportion of variance explained using the formula for eta-squared?

0.31